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A B S T R A C T

Due to the increasingly significant cost of data movement, In-storage Computing has attracted considerable
attention in academia. While most In-storage Computing works allow direct data processing, these methods do
not completely eliminate the participation of the CPU during file access, and data still needs to be moved from
the file system into memory for processing. Even though there are attempts to put file systems into storage
devices to solve this problem, the performance of the system is not ideal when facing high latency storage
devices due to bypassing the kernel and lacking page cache.

To address the above issues, we propose StorStack, a full-stack, highly configurable in-storage file system
framework, and simulator that facilitates architecture and system-level researches. By offloading the file system
into the storage device, the file system can be closer to the data, reducing the overhead of data movements.
Meanwhile, it also avoids kernel traps and reduces communication overhead. More importantly, this design
enables In-storage Computing applications to completely eliminate CPU participation. StorStack also designs
the user-level cache to maintain performance when storage device access latency is high. To study performance,
we implement a StorStack prototype and evaluate it under various benchmarks on QEMU and Linux. The results
show that StorStack achieves up to 7x performance improvement with direct access and 5.2x with cache.
1. Introduction

In traditional computing architectures, data must be transferred
from storage devices to memory for processing, which not only con-
sumes the computing resources of the host, but also results in high
energy consumption and I/O latency. As data scales continue to expand,
In-storage Computing has been proposed to alleviate the pressure of
data movement [1,2]. The core idea is to perform computations directly
where the data is stored, without the need to move the data. The
emergence of high-speed storage devices like SSDs [3] and SCMs [4,5]
has significantly advanced research in In-storage Computing and trans-
formed computer storage systems. To fully leverage the potential of
storage systems and exploit the characteristics of this new computing
paradigm, a redesign of storage stack software is required.

As the most essential part of the storage stack software, file systems
have been residing in the operating system kernel for a very long
time because they need to perform integrity assurance and access
control to ensure data security. The kernel is considered a trusted field
compared to the user space. However, this seemingly good design has
been challenged by new technologies. With the emergence of faster
storage devices such as SSDs and SCMs, access latency decreases signif-
icantly compared to HDDs [6], leading to the software overhead of file
systems [7,8] becoming a major performance bottleneck. Meanwhile,
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the design and operation of file systems determine their reliance on
the CPU when accessing the file system. For In-storage Computing,
although researchers are gradually reducing CPU involvement, current
file systems still rely on the CPU to handle complex file management
tasks and ensure system security and integrity.

On the one hand, to reduce the software overhead of file systems,
many works aim at the kernel trap. For example, there are some efforts
to move the file system into user space [8–13]. But running in user
space may compromise the reliability of the file system, hence bugs
or malicious software may cause crashes and data loss. Some of these
works try to move the critical parts of the file system back to the kernel.
But in most cases, data-plane operations are interleaved with control-
plane operations, which may diminish the performance improvement
brought by kernel bypassing. In recent years, firmware file systems
have been proposed, which move file systems onto the storage device
controller [14–16] to completely get rid of the kernel trap. However,
those file systems are designed to be strongly coupled with the storage
device, making the device lack the replaceability of file system and
the compatibility with conventional operating systems. In addition,
these firmware file systems do not provide comprehensive security
guarantees.
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On the other hand, to fully leverage the advantages of In-storage
omputing, it is necessary to eliminate the participation of host-side
S from the storage access path. In-storage Computing advocates for a
ata-centric approach, where computation units are embedded within
he storage devices to enable direct data processing. However, in the
rocess of accessing files, traditional file systems still require CPU
nvolvement. To know which data should be transferred next, file access

should be first handled by the host-side file system in the operating
system kernel. This CPU intervention limits the computational capacity
improvements that In-storage Computing can offer.

Another point worth noting is that numerous studies propose im-
roving system performance by allowing user applications to bypass
he kernel and communicate directly with storage devices. This method

demonstrates significant performance improvements when dealing with
high-speed storage devices. However, due to the diversity of storage de-
vices and their varying latencies, system performance may suffer when
bypassing the high-speed cache, especially when using high-latency,
low-speed storage devices. Therefore, the impact of cache configuration
on performance is also a subject of our further research. In summary,
despite various attempts to optimize file systems performance and
reduce CPU involvement, current solutions still have several issues.

To further optimize the performance and security of file systems
and fully unleash the potential of in-storage computing, we propose
StorStack, which is a full-stack, highly configurable, in memory file
system framework and simulator on high-speed storage devices such as
SSDs and SCMs. Since file systems always have a fixed primary func-
ionality of managing the data mapping, which is similar in function to
he flash translation layer (FTL) on the storage controller, we consider it
atural and reasonable to run the file system on the storage controller.

StorStack has three main components: a device firmware runtime
for file systems enabling file systems to run directly on the storage
evice, a user library to expose POSIX interfaces to user applications,
nd a kernel driver to guarantee access control. By moving the file sys-

tem into the storage, StorStack aims to gain performance improvement
from the concept of In-storage Computing that brings the file system
closer to the data. Moreover, the file system code is removed from the
kernel, which can avoid the latency and context switches caused by
kernel traps during file access. More importantly, StorStack can remove
the CPU from the storage access path of In-storage Computing appli-
cations, maximizing the potential of In-storage Computing. To ensure
the security and reliability of the file system, StorStack has designed an
efficient security mechanism, introducing a device-side controller as the
runtime and retaining control plane operations within the host kernel.
By reducing the ratio of control plane to data plane operations, kernel
traps are minimized, enhancing performance. StorStack also includes a
user-level cache to explore the impact of cache on the performance of
in-storage file systems.

We implemented StorStack as a prototype and evaluated it on
EMU and Linux 5.15. Experimental results demonstrate that StorStack
erforms up to 5.2x faster times than Ext-4 with cache and 7x times
ith direct access. Regarding the cache, we find that as access latency

ncreases, file systems with cache always maintain high speeds, whereas
the speed of file systems without cache decreases significantly.

2. Background and related work

The storage or memory system has changed a lot in the past decades.
With the development of speed, capacity, and size, and the emergence
f new types of storage, a rethink of both hardware and software is
equired to exploit the potential of the system in the next era. In this
ection, we first discuss the trends of two novel high-speed non-volatile
torage, and then explored the significance of applying In-storage Com-
uting on these storage devices. Finally, we briefly introduce three file

ystems in different locations. b

2 
2.1. Hardware trends

Compared to the large, slow HDD, solid-state drive (SSD) is a kind of
flash-based non-volatile storage with small form factor, high speed, and
low energy costs [17,18]. SSDs on the market today can provide up to
30 TB of capacity and 7 GB/s throughput on sequential read/write. To
fully exploit the high performance, modern SSDs have switched from
ATA to PCIe and NVMe. PCIe 5.0 [19] supports up to 16 lanes and 32

GT/s data rate, which leads to more than 60GB/s bandwidth. NVMe [3]
is a communication protocol for non-volatile memories attached via
PCIe, supporting up to 65,535 I/O queues each with 65,535 depth. It
lso supports SSD-friendly operations like ZNS and KV, which can help

SSDs further enhance SSDs’ throughput capabilities.
Storage class memory (SCM), also referred to as persistent mem-

ry (PMEM) or non-volatile memory (NVM), is a different type of
storage device that is fast and byte-addressable like DRAM, but can
lso retain data without power like SSDs. Various technologies such as
RAM [20,21], MRAM [22], and ReRAM [23,24]have been explored to

implement SCM, each exhibiting different performance characteristics.
SCM provides higher bandwidth than SSD; it offers latency close to
DRAM, and its capacity falls between SSD and DRAM [25]. As a new
blood in the storage hierarchy, SCM can provide more possibilities to
multiple workloads [26–29].

Consequently, while the increased bandwidth and reduced latency
of storage devices have substantially boosted the performance of com-
puter systems and enabled novel application scenarios, these advance-
ments also introduce several challenges. These challenges include
heightened complexity in data management, the need to balance cost
and efficiency, and issues related to technical compatibility and migra-
tion.

2.2. In-storage computing

While these new storage devices have significantly altered the
emory hierarchy of computer systems, the memory wall between

CPU and off-chip memory is still the bottleneck of the whole system,
specially with the rise of data-intensive workloads and the slowdown

of Moore’s law and Dennard scaling. To reduce the overhead of data
ovement, In-storage Computing(ISC) [30–32]is proposed, gaining

increasing attention with advancements in integration technologies.
However, most current research predominantly focuses on offloading
user-defined tasks to storage devices, and this approach still faces
limitations in practice.

First, existing ISC methods exhibit significant shortcomings in terms
of compatibility and portability. On the host side, developers must de-
sign custom APIs for ISC, which are incompatible with existing system
interfaces such as POSIX, demanding substantial modifications to the
host code [32]. On the drive side, the drive program either collaborates
with the host file system to access the correct file data [33] or manages
he drive as a bare block device without a file system. However, most

systems still rely on file system-based external storage access, with the
ile system typically running on the CPU. Consequently, ISC tasks often

require CPU involvement when accessing external storage data.
Secondly, current approaches lack adequate protection and isolation

or ISC applications. To fully leverage the high speed of modern storage
evices, multiple ISC applications may need to execute concurrently.
ithout proper data protection mechanisms, malicious or erroneous

SC tasks could access unauthorized data. Without isolation, the exe-
ution of one ISC task could compromise the performance and security
f others. However, most existing research [1,34,35] assumes that ISC
asks operate in an exclusive execution environment, failing to address
hese concerns effectively. Additionally, when specific code is offloaded
o storage devices, attackers can exploit vulnerabilities in in-storage
oftware and hardware firmware, such as buffer overflows [36,37] or
us snooping attacks, to escalate privileges and harm the system.
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2.3. File system

The evolution of storage hardware poses higher demands for soft-
ware systems. As a crucial part of the software stack of the storage
ystem, file systems should be redesigned to minimize software over-

heads, especially the involvement of the OS kernel on the data path.
Many efforts have explored the possibility of different file system
locations.
Kernel file systems. Numerous typical file systems are implemented
inside kernel as kernel file systems, including Ext4, XFS, etc. Due to
the isolation of kernel space, kernel file systems can easily manage
data and metadata with reliability guarantees [38]. Recent works on
ernel file systems have sought to exploit the capabilities of modern
torage devices. For example, F2FS [39] is built on append-only logging
o adapt to the characteristics of flash memory. PMFS [38] introduce

a new hardware primitive to avoid the consistency issues caused by
CPU cache while accessing SCM. DAX [40] bypasses the buffer cache
of the system to support direct access to the storage hardware so that
he redundant data movement between DRAM and SCM is removed.
OVA [41] explores the hybrid of DRAM and SCM as a specially

designed log-structured file system. However, kernel file systems have
several limitations. Firstly, the development and debugging process
within kernel space is inherently complex and difficult. Furthermore,
every file system access necessitates a kernel trap, which inevitably in-
troduces latency. Additionally, the frequent context switching between
user processes and the kernel increases CPU overhead.
User-space file systems. User-space file systems are implemented

ostly in user space to bypass the kernel and reduce the overhead as-
ociated with kernel traps. However, since most user-space file systems

are implemented in untrusted environments, ensuring data security and
reliability becomes challenging. User-space file systems need sophisti-
cated design, usually the collaboration between kernel space and user
space, to keep them reliable. For example, Strata [11] separate the
file system into a per-process user space update log for concurrent

riting and a read-only kernel space shared area for data persistence.
oneta-D [9] provides a hardware virtual channel support with kernel

space file system protection policy and a user space driver to access the
hardware. There are also efforts to implement the control-plane of the
file system as a trusted user space process [8,12].
Firmware file systems. Works that offload part or the whole of the file
system into the storage device firmware are categorized as firmware
file systems. There are three representative works on firmware file sys-
tems: DevFS [14], CrossFS [15] and FusionFS [16]. DevFS and CrossFS
explore the possibility of moving the file system to the storage side to
benefit from kernel bypass. FusionFS goes further on the previous two
works and attempts to gain performance by combining multiple storage
access operations. However, we have identified several problems of
these file systems. First, these firmware file systems are tightly coupled
with specific storage devices, which makes it hard for users to select
alternative file systems or upgrade the software version of the current
file system. Second, none of these file systems are designed to operate
effectively in scenarios with significant communication latency. Third,
the lack of security mechanisms limits their applicability in real-world
environments.

2.4. Motivation

Although kernel file systems are well-designed and time-tested, their
esign principles, which assume high device access latency, are no
onger suitable for modern high-speed devices. User-space file systems
nd firmware file systems have explored new approaches to file system
mplementation in the era of high-speed storage; however, they may
ead to inferior performance with traditional devices, compromised
ecurity controls, or inflexible, non-replaceable file systems. To ad-
ress these issues, we introduce StorStack, a fast, flexible, and secure
n-storage file system framework. The detailed comparison between
torStack and previous file systems is shown in Table 1.
3 
3. Design

In this section, we first discuss the design principles of StorStack,
ollowed by an overview of its architecture, connection between host
nd device, scheduling mechanisms and reliability designs.

3.1. Principles

1. Provide a full-stack framework to enable in-storage file sys-
ems without compromising performance. To support in-storage
S, StorStack’s design includes a user library, a kernel driver, and a
irmware FS runtime. By bringing FS code out of the kernel and closer
o the data, StorStack avoids the kernel trap and reduces the commu-
ication overhead. StorStack also incorporates a user-level cache to

maintain the performance when the access latency of the device is high.
2. Make full use of the heterogeneity of the host CPU and

torage device controller. The in-storage FS yields the host CPU time
o user application codes and cuts the energy cost, while conflicts due
o concurrent access are resolved on the host CPU to maintain the per-

formance. If necessary, the cache is also retained on the host side, and is
anaged by the user space. Such a heterogeneous system can maximize

the overall performance and minimize the power consumption of the
system.

3. Guarantee the reliability of the file system with minimal
overhead. To provide essential guarantees such as permission check-
ing, StorStack keeps its control plane within the trusted area. Addi-
tionally, to enhance performance, a token mechanism is introduced to
prevent StorStack from accessing the kernel during data-plane opera-
tions.

4. Keep compatible with conventional operating systems. The
design of StorStack does not require changes to current operating
systems. Instead, the user lib and kernel driver of StorStack are add-
ons. Even without them, the StorStack storage device can be accessed
with typical block- or byte-based interfaces, just like traditional SSDs
or SCMs. StorStack also supports per-partition replaceable file sys-
tems, which is a regular function in current operating systems but not
supported by firmware file systems.

5. Support heterogeneous computing. By providing a device-level
file interface, StorStack may enable multiple advanced heterogeneous
ccess patterns, including In-storage Computing (ISC) [31,32,42,43]

and direct I/O access from GPUs [44,45] or NICs [42,46]. In this work,
we provide basic support for these patterns and plan to further explore
them in future research.

6. Run with reasonable hardware setup on the storage device.
revious research on firmware file systems has assumed that device
ontroller hardware capabilities are severely limited. However, today’s
igh-end storage devices feature up to 4 cores and DRAM capacity that
an reach 1% of their storage capacity [47]. As in-storage processing

evolves, hardware configurations will continue to improve [30,43,
48–50]. In StorStack, we assume that the device possesses sufficient
capabilities to run file systems alongside a runtime environment. Fu-
ture research can investigate the benefits of integrating in-storage file
systems with additional device-side capabilities, such as power loss
protection capacitors or the flash translation layer.

3.2. Architecture

To support in-storage file systems with compatibility, flexibility, and
reliability, StorStack has three major parts distributed over user space,
kernel space, and device side.
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Table 1
The detailed comparison between StorStack and previous file systems.

Software access
latency

Expected hardware
latency

FS position Host-side cache Replaceable FS Isolated access
control

Kernel FS High High Host ✓ ✓ ✓

User-space FS Low Low Host ◦ ✓ ◦
Prev.Firm FS Low Low Device × × ×
StorStack Low Either Device ✓ ✓ ✓
Fig. 1. StorStack Architecture. StorStack consists of three major modules: the U-lib, the K-lib, and the Firm-RT; and there are two workflows: a data-plane workflow, and
a control-plane workflow. The interconnection between them is shown in the figure.
c

p
t
t

3.2.1. High-level design
As shown in Fig. 1, StorStack consists of three major parts: a user

ib (U-lib), a kernel driver (K-lib), and an FS runtime in device
firmware (Firm-RT).
U-lib. The U-lib is the interface for user applications to access the
in-storage FS, offered as a dynamic link library. The main job of the
U-lib is to expose POSIX file operations to users, provide user-level
cache, and manage the connection with the device. It also cooperates
with the K-lib and the Firm-RT to ensure the reliability of the
system.
K-lib. The K-lib is a kernel module to provide control-plane op-
rations with reliability. Its work includes resource allocation and
ermission checking. Although it resides in the kernel, the functions
f K-lib are designed to be rarely called to avoid the performance
enalty associated with kernel traps.
Firm-RT. The Firm-RT is a runtime on the storage firmware that
offers essential hardware and software support for in-storage FS to run
on the device controller. To serve the FS, Firm-RT communicates
with both the U-lib for data-plane operations, and the K-lib for
control-plane operations.

3.2.2. StorStack workflow
For clarity, the workflow of StorStack is divided into a data plane

nd a control plan. The data-plane workflow handles data accesses from
ser space, and the control plane is responsible for maintaining the
ystem’s functionality, safety, and reliability.

For the data plane (red lines in Fig. 1), when a user application
calls a file operation in StorStack, the host-side U-lib will check the
cache if the cache is used. If the cache is bypassed or penetrated,
he U-lib packs it into an extended NVMe protocol command, and
4 
subsequently transmits it to the device-side Firm-RT. The Firm-RT
receives the NVMe command, checks its validity, and then forwards the
ommand to the FS. The FS handles the file operation and then works

with the FTL or other hardware instruments to arrange the data blocks
on the storage media. The primary distinction between this routine and
a typical kernel-based file system lies in the fact that the file system
logic is inside the storage device, thus StorStack thereby eliminating
the need for kernel traps during data access.

The control plane (blue dashed lines in Fig. 1) provides necessary
supports for the data plane to work properly. Control-plane operations
on the host side, including memory resource allocation and identity
token assignment, are delegated to the kernel to ensure security and
reliability. The host-side control-plane operations are designed to be
rarely called to reduce kernel trap overhead. On the device, the control
plane assists in check the authentication of requests, manage the FS,
and deal with other management operations. More detailed security
and reliability policies will be described in Section 3.5.

3.2.3. Organization on the storage
In StorStack, file systems are stored in the storage media with

ointers originating from partitions, so that the framework can choose
he right FS to access a partition. We dedicate a partition to store all
he FS binaries that are used by user-created partitions, and each FS

in this partition can be indexed by a number. Here we assume that a
GUID partition table (GPT) to organize the partitions. Each user-created
partition is associated with an FS when it is formatted, and the FS will
be added to the FS partition we just mentioned if it was not there yet.
To indicate the relation between the user-created partition and its FS,
the index number of the FS is added to the attribute flags bits of the

Fig. 2. This
partition’s GPT entry. The organization is illustrated in
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Fig. 2. Partition organization. Figure shows how the FS is stored on the storage and associated with the partition.
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design allows StorStack to provide different file systems to different
partitions. Meanwhile, the GPT and the partitions are still available for
the typical kernel file system routine.

3.3. File access pattern

The U-lib provides POSIX IO and AIO interfaces to user appli-
ations, and the complicated reliability and performance designs are

transparent to users. For regular IO interfaces, the write operations
(write, pwrite) act differently with and without cache. When the cache
is used, writes will return as soon as an operation passes some simple
check and is put into the queue. The interface will not promise that
the data is written to the disk before it returns, just like a traditional
kernel file system, unless the fsync is called. Without cache, the writes
will block the process until the data is written to the storage. The
read interfaces (read, pread) will not return until the data is available,
regardless of whether there is a cache. The AIO interfaces return
immediately when an operation is put into the queue, and the real
return value can be fetched by non-blocking check, blocking suspend,
or signal.

To make sure that StorStack performs well on high-latency storage
evices, an optional user-level per-process cache is provided. Because

the reliability of StorStack can only be ensured by the device-side file
system but not the U-lib, we choose per-process cache to prevent
malicious processes from polluting data by writing to a global cache
without check. The user-level cache has two ways to deal with write
operations: the write-back method returns immediately after the data
is put into the cache; the write-around method drops the dirty data in
cache and returns after the operation is put into the queue. The write-
back cache has a higher performance than the write-around cache,
while the write-around cache can provide higher data consistency. In
fact, our evaluation shows that the write-back cache in StorStack can
outperform the page cache inside the kernel.

3.4. Connectivity

Here we discuss how the host-side U-lib and K-lib communicate
with the device-side Firm-RT. StorStack’s communication is based
on NVMe to take full advantage of high-speed storage devices. We
also propose a multi-queue design to improve the performance of
device-side FS.

3.4.1. Communication protocol
The communication protocol between the host CPU and StorStack

evice is a queued protocol extended from NVMe [3]. NVMe is a
protocol for accessing non-volatile memories connected via PCIe that
supports multiple queues to maximize the throughput, which is suitable
for novel high-speed storage devices such as SSDs and SCMs.

To enable the transfer of file operations, we extend the NVMe
command list to incorporate the POSIX I/O interface. Meanwhile, the
regular data access pattern of NVMe is retained to enable normal
 i

5 
disk access when the system does not support StorStack. It is note-
worthy that the protocol can be further extended under StorStack to
support more paradigms like transactional access [51], log-structured
access [52,53], operations fusing [16], or In-storage Computing. We
will leave these further explorations to our future work.

With StorStack, heterogeneous hardware like GPUs can implement
this extended protocol to access files directly without involving the

PU. For different types of hardware, there are two ways to transmit
ata. For those who have their own memory (memory-mapped) like
PUs, StorStack can directly place the data to their memory via PCIe
us. For hardware without memory (I/O mapped), StorStack should put
he data into the main memory. The manipulation of data destination
s directed by the target device driver.

3.4.2. Multi-queue arrangement
NVMe uses multiple queues to improve performance, supporting up

to 65,536 I/O queues, with 65,536 commands per queue. Normally,
NVMe offers at least a pair of queues (one submission queue and one
completion queue) for each core to fully utilize the bandwidth without
ntroducing locks. In StorStack, file operations are processed on the
evice side, particularly when the storage device features a multi-core
ontroller. To fully utilize the parallelism of the controller cores while
inimizing the potential conflicts of concurrent file access, StorStack

ntroduces a special queue organization.
As Fig. 3 shows, every user process in StorStack is assigned a bunch

f queue pairs, the number of which is equal to the storage device
ontroller core count. Each queue pair of the queue pair bunch is bound
o a controller core of the storage device, so that a process can distribute
ny file operation to a specific controller core. Meanwhile, each user
hread has its exclusive queue pair bunch to avoid queue contention
n the host side.

The purpose of this arrangement is to enable the host-side ap-
plications to control which operation should be dispatched to which
controller core. For example, read intensive applications can issue read
operations to all cores with a round robin strategy. For write intensive
applications, different threads can send the write operations on the
ame file to the same controller core to reduce lock contention between
ontroller cores. We will leave the exploration of the scheduling policy
or different workloads to future works.

3.5. Security and reliability

From a hardware perspective, the privileged mode (ring 0) that the
ernel runs on and the user mode that user applications run on are
solated, which means the access to resources is restricted by hardware.
he privileged mode can thus be treated as a trusted area, whereas the
ser mode as an untrusted area. StorStack introduces the device-side
ontroller as a run-time, which is also isolated from user code and thus
iewed as a trusted area.

For safety, everything critical to the correctness of the system should
e placed in the trusted area. Typical kernel file systems are placed
nside the kernel as they need to manage the data on block devices.
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Fig. 3. Queue arrangement and scheduling policies. This figure shows how the
ueue pairs are mapped between host CPU threads and device controller cores.

StorStack shifts FS to the device side, which is also a trusted area.
Meanwhile, as described in Section 3.2.2, StorStack separates the host-
ide workflow into a control plane and a data plane. The control plane
s designed to reside in the host-side trusted area, i.e. the kernel, to
ooperate with the device-side FS to ensure security and reliability.

An important design principle of the control plane is to reduce the
overhead of the kernel trap. In StorStack, this is done by reducing
he proportion of control-plane operations and data-plane operations.

There are two types of control-plane workflow on the host side: re-
ource allocation and access control. Both of them are designed to be

called rarely.

3.5.1. Resource allocation
The U-lib of StorStack is a user-space driver that communicates

ith the NVMe storage device. It needs to set up VFIO and manage
DMA memory mapping to enable direct access from user space. It also
needs to allocate areas for caches. These operations involve the kernel
but only need to be run once when the device is initialized, so there
will not be any performance loss in regular file access.

3.5.2. Permission checking
To provide access control, file systems must check the user’s permis-

sion to make sure that a file operation is legal. In kernel file systems,
he file system can use the process structure in the kernel to validate the
rocess’s identity, and then compare it with the permission information
tored in the file’s inode. In StorStack, however, the file system resides
n the device rather than in the kernel, so the kernel needs to share the
rocess’s information with the device to support permission checking.

To avoid entering the kernel frequently, DevFS [14] maintains a
able that maps CPU IDs to process credentials in the device. All
equests are tagged with the CPU’s ID that the process runs on before

they are sent to the device. The kernel is modified to update the table
henever a process is scheduled on a host CPU. There are two problems
ith this mechanism. Firstly, it assumes that the CPU ID is unforgeable,
ut usually a malicious process can potentially exploit the ID of another
PU to escalate its privilege. Secondly, this requires a modification to
he process scheduler, which is a core module of the kernel, so making
t incompatible with standard OS kernels, and may slow down the

system.
In StorStack, we propose a new method to share the credential of

the process, with less communication, safer guarantee, and no change
to the Linux kernel. The process is shown in Fig. 4. When the U-
lib is initialized on a process, it calls the K-lib (a kernel driver)
via ioctl() (system call) to get a credential token. The K-lib
6 
Fig. 4. Permission checking. Figure shows how the user space, the kernel space, and
the device work together to check the validity of a request without frequent kernel
traps.

generates a secret key if one has not been set yet, then save and copy
t to the device by kernel NVMe driver. Once the key is set, K-lib
ses it to encrypt the process’s credential information (i.e. uid) into
AC (Message Authentication Code). The resulting token, which is the

utput of the encryption, is then returned to the process. Since the
ecret key is stored in the kernel, the process cannot forge a token
ut can only use the one assigned by the kernel, which can prove the
uthenticity of the uid claimed by the process. Before being sent to the

device, every request from the process is tagged with the process’s uid
and the token, so that the device can use the secret key and the token
to verify the uid and check the identity of the request. This mechanism
requires only one communication between the kernel and the device to
share the secret key, and one kernel trap to initialize the token for each
rocess. Also, the K-lib is implemented as a kernel driver, without
ny modification to the core functions of the kernel, which makes it
ompatible with conventional operating system.

3.5.3. Device lock
StorStack is designed to support direct I/O not only from CPUs,

but also from different types of heterogeneous computing devices.
To prevent concurrent access to the same file from multiple devices,
a concurrency control method is required. A common practice is to
implement a distributed lock across all devices, but this can be too
costly for low-level hardware. In StorStack, we provide in-storage file-
level locking mechanisms to protect the files from unexpected access
by multiple devices.

StorStack supports two types of lock: (1) spinning lock, an error
code will be returned to the caller if the file it accesses is already locked
by another device, allowing the caller to continue attempting to acquire
the lock until the file is unlocked; (2) sleeping lock, where if the file
is locked, any requests from other devices to that file will wait in the
submission queue until the file is unlocked. From the perspective of
concurrency, StorStack supports both shared lock and exclusive lock,
which act exactly the same as those on other systems.
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Fig. 5. Random and sequential r/w. Figure shows the basic performance of StorStack compared with Ext-4, under different cache, block size, and in-storage file system settings.
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Fig. 6. Time cost for a single operation.

3.6. Implementation

We have implemented a prototype of StorStack, which consists of
hree parts: the U-lib, the K-lib and the Firm-RT. The source code
f this prototype is available at https://anonymous.4open.science/r/
torStack-524F/.

The U-lib is implemented under Linux 5.15, utilizing SPDK [54]
o access storage devices from user space. The SPDK library is modified
n StorStack to transfer POSIX I/O operations over NVMe. The U-lib
omprises two major components: a dynamic link library that provides
nterfaces and a user-level cache for accessing the device, and a daemon
rogram responsible for managing the connection to the device.

The K-lib is implemented as a simple kernel module in Linux 5.15
kernel. It only takes charge of two things: creating the secret key when
the StorStack is initialized so that the K-lib and the Firm-RT can
use it to encrypt and decrypt the MAC token for processes’ credentials;
enerating the MAC token from the uid of the current process with
MAC algorithm when the process initializes, and then return it to

the U-lib. The interface of the K-lib is exposed to the user space
through ioctl.

The Firm-RT is the only component that located on the device
side. In this work, the Firm-RT is not implemented on actual stor-
age hardware but is instead simulated using QEMU and the system
7 
running on its host machine. There are two reasons for the simula-
ion: first, although there are several works regarding programmable

storage controllers [49,55–57], these solutions are either expensive or
ack high-level programmability as most of them are based on FPGA;
econd, by simulating with various latency settings, we can evaluate the
erformance of StorStack on different types of storage devices, which
an be costly if done with real hardware. In our prototype, QEMU has
een modified to handle extended NVMe POSIX I/O operations and
heck the token of each operation.

4. Evaluation

In this section, we evaluate the performance of StorStack and com-
are it with popular file systems to answer the following questions:

• Is StorStack efficient enough compared to widely used kernel file
systems?

• How much performance is gained from the kernel trap avoidance?
• How does StorStack perform on different types of devices?
• How is the concurrency performance of StorStack?

4.1. Experimental setup

Our experiment platform is a 20-core 2.4 GHz Intel Xeon server
equipped with 64 GB DDR4 memory and 512 GB SSD. Among them, 8
cores with 16 GB memory are assigned to the QEMU VM to simulate the
StorStack host; other cores with 16 GB memory are reserved to emulate
the StorStack device. Both the StorStack host and the StorStack device
runs on Linux 5.15.

StorStack’s expected settings on the device require only a minimal
embedded system with abstractions of hardware functions and neces-
ary libraries, but due to our simulation requirements, we choose Linux
s the device-side environment to support the execution of QEMU.

In this section, we evaluate the performance of StorStack using
ilebench [58], a widely used benchmarking suite for testing file system

performance. We access StorStack under various configurations, includ-
ing different cache options, device access latency, thread numbers and
read/write ratios, to address the four questions previously raised.

https://anonymous.4open.science/r/StorStack-524F/
https://anonymous.4open.science/r/StorStack-524F/
https://anonymous.4open.science/r/StorStack-524F/
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Fig. 7. Performance with simulated latency. This figure shows the change in throughput as a function of simulated device access latency.
Fig. 8. Multi-thread Performance.
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4.2. Random and sequential r/w

First, we evaluate StorStack’s performance with single-thread ran-
dom and sequential read/write tests. The random tests run on a 1 GB
file with 1K, 4K, and 16K bytes I/O size. The sequential tests run on
 8 GB file with 8K, 32K, and 128K bytes I/O size. Both of the files
re stored on the DRAM memory, which is simulated as a PMEM by
emmap. The tests are performed on StorStack (referred to as SS) with

wo different in-storage FS settings: SS+Ext-4 and SS+Ext-4_DAX.
hen we compare them with Ext-4. We also evaluate the performance
f SS without cache (SS NC) and Ext-4 with direct IO (Ext-4_DIO)
o study performance improvement when accessed directly.

Fig. 5 shows the results of the random and sequential tests. In
both tests, SS outperforms traditional kernel-level Ext-4, due to our
ernel-bypass and near-data file system design. SS+Ext-4_DAX with
ser-level write-back cache achieves averagely 1.98x, 4.25x, 3.59x, and
.08x performance gain on random read, random write, sequential
ead, and sequential write respectively compared with Ext-4 with
age cache. For direct access, the speed increase is 6.41x, 6.21x,
.72x, and 1.90x respectively. Another interesting phenomenon is that
n cached StorStack, the performances of SS+Ext-4 and SS+Ext-
_DAX are similar, indicating that the choice of the in-storage file
ystem does not matter because most operations are handled by
he user-level cache. However, in uncached tests, SS+Ext-4_DAX
how better results, which means that the in-storage file system may
nfluence the overall performance in direct access.

4.3. Profit of kernel bypassing

We measure the time cost of a single operation to study the profit
f kernel bypassing. The cached test demonstrates the impact of kernel

trap on the access of in-memory page cache. The uncached test shows
the impact of both kernel trap and write amplification on direct access
to the storage device. Both tests utilize 4KB block size, and the files
re stored on the simulated PMEM. The results in Fig. 6 indicate that
ompared to Ext-4, SS+Ext-4_DAX reduces latency by 91.91%,

50.46%, 69.83%, and 81.83% on cached read, cached write, uncached
8 
read, and uncached write.
When the cache hits, the data resides in fast DRAM, resulting in

low data-fetch latency. In this scenario, traditional Ext-4 exhibits higher
access latency, as the kernel trap accounts for most of the latency.
In contrast, StorStack shows lower latency because its cache is imple-
mented inside user space eliminating the need for kernel traps. When a
cache miss occurs, the primary overhead shifts to the multiple rounds
of storage device access, which further increases the performance gap
between traditional Ext-4 and StorStack.

4.4. Impact of access latency

Storage devices with different access latencies may influence the
performance of file systems. In this experiment, we use multiple latency
settings to simulate devices with different access speed. The latency is
simulated on the device side by QEMU.

We compare the performance of SS with Ext-4 under cached and
ncached settings using several latency settings. The latency ranges
rom 0 μs to 25 μs to simulate connection methods from DDR to PCIe
o RDMA. Tests run with 4KB block size.

Fig. 7 shows the result of this test. With a cache, both SS and
xt-4 are not susceptible to the rise of latency. However, without
ache, the performance of SS has a 78.20% degrade from 526MB/s
t 0 simulated latency to 115 MB/s at 25 μs latency. The performance
f Ext-4 also cuts 20.98% from 54MB/s to 43MB/s. Note that the
xperiment introduces extra latency due to QEMU, so the simulated 0
atency is larger than 0 actually, meaning that the curve can even go
igher on the left side of the graph. The result illustrates that direct
ccess of SS should only be enabled on ultra-low latency devices. For
ther hardware, it is better to enable the cache.

4.5. Multi-thread performance

To study the performance of StorStack under multiple threads, we
valuate SS and Ext-4 under a multi-thread micro-benchmark. The
enchmark is to perform parallel 4KB file operations on one file with 4

threads, each thread is a reader or a writer, and the ratio of readers and
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writers is set to 4:0, 3:1, 1:3, and 0:4. Fig. 8 shows the result. StorStack
is faster than Ext-4 in all concurrent read and write scenarios of our
est. For cached scenario, SS is on average 2.88x faster than Ext-4 in
ll read-write ratios. For uncached scenario, the speed up is 17.34x.

5. Conclusion

In this paper, we present StorStack, a full-stack design for in-storage
file systems framework and simulator. The StorStack components across
user space, kernel space, and device space collaborate to enable file
systems to run inside the storage device efficiently and reliably. We
implement a prototype of StorStack and evaluate it with various set-
tings. Experimental results show that StorStack outperforms current
kernel file systems in both cached and uncached scenes. Some further
erformance optimizations, such as the combination of file systems and
torage hardware capabilities, the exploration of multi-queue schedul-
ng strategies for different workloads, and the performance of direct
ccess from heterogeneous devices, are left to future work.
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